M1.
(a) $\overrightarrow{B C}=2 \mathbf{a}-3 \mathbf{b}$ or

$$
\overrightarrow{C B}=-2 \mathbf{a}+3 \mathbf{b} \text { or }
$$

$$
\overrightarrow{A M}=\mathbf{a} \text { or } \overrightarrow{M A}=-\mathbf{a} \text { or }
$$

$$
\overrightarrow{B N}=\frac{2}{5} \overline{B C} \text { or } \overline{C N}=-\frac{3}{5} \overline{B C}
$$

oe

$$
\begin{gathered}
\mathbf{a}+\frac{3}{5}(-2 \mathbf{a}+3 \mathbf{b}) \\
-\mathbf{a}+3 \mathbf{b}+\frac{2}{5}(2 \mathbf{a}-3 \mathbf{b}) \\
o \boldsymbol{e}
\end{gathered}
$$

$$
-\frac{1}{5} \mathbf{a}+\frac{9}{5} \mathbf{b}
$$

$$
\text { oe eg }-0.2 \mathbf{a}+1.8 \mathbf{b} \text { or } \frac{1}{5}(9 \mathbf{b}-\mathbf{a})
$$

Must collect terms
(b) $\overrightarrow{M N}$ is not a multiple of $\overrightarrow{A B}$

M2.
(a) $a+\frac{1}{2} b$
$o e$

$$
\begin{aligned}
& \overrightarrow{Q S}=-a+b \\
& \text { or } \overline{S Q}=a-b
\end{aligned}
$$

oe

$$
\begin{aligned}
& \overline{Q N}=-\frac{1}{3} a+\frac{1}{3} b \\
& \text { or } \overline{S N}=\frac{2}{3} a-\frac{2}{3} b
\end{aligned}
$$

oe
(b) $\overrightarrow{P N}=\frac{2}{3} \boldsymbol{a}+\frac{1}{3} \boldsymbol{b}$
or $\overline{N M}=\frac{1}{3} a+\frac{1}{6} b$
oe

Valid reason
Strand (ii)
e.g. PN is a multiple of PM
$P N$ is a multiple of $N M$

$$
\begin{aligned}
& \overrightarrow{P N}=\frac{1}{3}(2 a+b) \text { and } \overrightarrow{P M}=\frac{1}{2}(2 a+b) \\
& \overrightarrow{P N}=\frac{2}{3}\left(a+\frac{1}{2} b\right) \text { and } \frac{2}{3} \overline{P M}
\end{aligned}
$$

M3.
(a) $\overrightarrow{A B}=-6 a+4 b$

$$
\begin{aligned}
& \text { or } \overrightarrow{A M}=-3 a+2 b \\
& \text { or } \overrightarrow{M B}=-3 a+2 b
\end{aligned}
$$

Need not be simplified oe

$$
\begin{aligned}
& a+\frac{1}{2}(4 b-a-5 a) \\
& =a+\frac{1}{2}(4 b-6 a) \\
& =a+2 b-3 a \\
& =2 b-2 a
\end{aligned}
$$

or

$$
\begin{aligned}
& -5 a+4 b+\frac{1}{2}(a+5 a-4 b) \\
& =-5 a+4 b+\frac{1}{2}(6 a-4 b) \\
& =-5 a+4 b+3 a-2 b \\
& =2 b-2 a \\
& \text { oe }
\end{aligned}
$$

(b) $\quad N C=5(\mathbf{b}-\mathbf{a})$ or $5 \mathbf{b}-5 \mathbf{a}$
$2: 5$

M4.(a) $\quad M N=1 / 2 x+1 / 2 y$

$$
\begin{aligned}
& o e \\
& M N=1 / 2 B C+1 / 2 C D \\
& M N=M C+C N
\end{aligned}
$$

$B D$ is a multiple of $M N$
oe
Q1
(b) $2: 1$

M5.(a) $5 a+3 b+6 a-7 b$
$11 a-4 b$
(b) 22

$$
\text { ft their } 11 \times 8 \div \text { their } 4
$$

Accept 22a (-8b)

M6.
(a) Opposite sides parallel (same direction) and equal (same length) or opposite sides are equal vectors

Strand (i). Must mention that opposite sides are parallel and equal or equal vectors
(b) $\mathbf{b}-\mathbf{c}$ or $\mathbf{- c}+\mathbf{b}$
(c) $L P=\frac{1}{2} \mathbf{a}+\frac{1}{2}(\mathbf{c}-\mathbf{a})$
$L P=$ must be stated or $L P=L A+A P$
$B 1$ for $\frac{1}{2} \boldsymbol{a}+\frac{1}{2}(\boldsymbol{c}-\boldsymbol{a})$

Alternative 1

$$
\begin{aligned}
& \frac{1}{2} \mathbf{a}+\frac{1}{2}(\mathbf{c}-\mathbf{a})=\mathbf{a}+\frac{1}{2} \mathbf{c}-\frac{1}{2} \mathbf{a} \\
& B 1 \text { for } \frac{1}{2} \mathbf{a}+\frac{1}{2}(\mathbf{c}-\mathbf{a})
\end{aligned}
$$

Alternative 2

$(L P)=-\frac{1}{2} \mathbf{a}+\mathbf{b}+(\mathbf{c}-\mathbf{b})+\frac{1}{2}(\mathbf{a}-\mathbf{c})$
This is $L P=L O+O B+B C+C P$
$-\frac{1}{2} \mathbf{a}+\mathbf{b}+\mathbf{c}-\mathbf{b}+\frac{1}{2} \mathbf{a}-\frac{1}{2} \mathbf{c}$

Alternative 3

$$
\begin{aligned}
& (L P)=-\frac{1}{2} \mathbf{a}+\mathbf{c}+\frac{1}{2}(\mathbf{a}-\mathbf{c}) \\
& \quad \text { This is } L P=L O+O C+C P
\end{aligned}
$$

Alternative 4

$\mathrm{OC}=\mathbf{c}$ and L and P are midpoints
Using midpoint theorem. This may be expressed differently but if evidence that mid-point theorem used then award M1
$L P=\frac{1}{2} O C$
This is for accurately describing the results using the mid-point theorem.

Alternative 5

Written explanation such as
(Journey of) L to A to P is half (the journey of) O to A to C so $L P$ is half $O C$.
B1 if intention seen but explanation not complete or slight error
(d) $\quad M N=\frac{1}{2} \mathbf{b}+\frac{1}{2}(\mathbf{c}-\mathbf{b})$
$L P=M N=\frac{1}{2} \mathbf{c} \ldots . . L M N P$ is a
parallelogram (as opposite sides are the same vector)
By choosing MN it is opposite LP so no need to say opposite sides but a 'conclusion' must be stated or implied

Alternative 1

$L M=-\frac{1}{2} \mathbf{a}+\frac{1}{2} \mathbf{b}$
$L M=P N=-\frac{1}{2} \mathbf{a}+\frac{1}{2} \mathbf{b} \ldots \ldots L M N P$ is a parallelogram (as opposite sides are the same vector).

By choosing LM and PN no need to say opposite sides but a 'conclusion' must be stated or implied

Alternative 2

$L P$ parallel to $O C$ and $\frac{1}{2} O C$ (midpoint theorem)
$M N$ parallel to $O C$ and $\frac{1}{2} O C$ (midpoint theorem) so $L M N P$ is a parallelogram as opposite sides parallel and the same length

