M1.

(a)
$$\overrightarrow{BC} = 2\mathbf{a} - 3\mathbf{b}$$
 or
 $\overrightarrow{CB} = -2\mathbf{a} + 3\mathbf{b}$ or
 $\overrightarrow{AM} = \mathbf{a}$ or $\overrightarrow{MA} = -\mathbf{a}$ or
 $\overrightarrow{BN} = \frac{2}{5}\overrightarrow{BC}$ or $\overrightarrow{CN} = -\frac{3}{5}\overrightarrow{BC}$
oe
MI
 $\mathbf{a} + \frac{3}{5}(-2\mathbf{a} + 3\mathbf{b})$
 $-\mathbf{a} + 3\mathbf{b} + \frac{2}{5}(2\mathbf{a} - 3\mathbf{b})$
oe
MI
 $-\frac{1}{5}\mathbf{a} + \frac{9}{5}\mathbf{b}$
 $oe = eg$
 $02\mathbf{a} + 1.8\mathbf{b}$ or $\frac{1}{5}(9\mathbf{b} - \mathbf{a})$
Must collect terms
AI

(b) \overrightarrow{MN} is not a multiple of \overrightarrow{AB} oe

B1ft

M2.

(a)
$$a + \frac{1}{2}b$$

 OP
 $\overline{QS} = -a + b$
 $Or \overline{SQ} = a - b$
 OP
MI
 $\overline{QN} = -\frac{1}{3}a + \frac{1}{3}b$
 $Or \overline{SN} = \frac{2}{3}a - \frac{2}{3}b$
 OP
(b) $\overline{PN} = \frac{2}{3}a + \frac{1}{3}b$
 OP
MIdep
(c) $\overline{PN} = \frac{2}{3}a + \frac{1}{3}b$
 OP
 OP

Valid reason

Strand (ii) e.g. PN is a multiple of PM PN is a multiple of NM $\overline{PN} = \frac{1}{3}(2a + b)$ and $\overline{PM} = \frac{1}{2}(2a + b)$ $\overline{PN} = \frac{2}{3}(a + \frac{1}{2}b)$ and $\frac{2}{3}\overline{PM}$

Q1

[5]

M3.

(a)
$$\overrightarrow{AB} = -6a + 4b$$

or $\overrightarrow{AM} = -3a + 2b$
or $\overrightarrow{MB} = -3a + 2b$
Need not be simplified
oe

M1

$$a + \frac{1}{2}(4b - a - 5a)$$

= $a + \frac{1}{2}(4b - 6a)$
= $a + 2b - 3a$
= $2b - 2a$
or
 $-5a + 4b + \frac{1}{2}(a + 5a - 4b)$
= $-5a + 4b + \frac{1}{2}(6a - 4b)$
= $-5a + 4b + 3a - 2b$
= $2b - 2a$
oe

A1

(b) $NC = 5(\mathbf{b} - \mathbf{a}) \text{ or } 5\mathbf{b} - 5\mathbf{a}$

2 : 5

M1

M4. (a)	$MN = \frac{1}{2}x + \frac{1}{2}$	oe		
		$MN = \frac{1}{2}BC + \frac{1}{2}CD$ $MN = MC + CN$		
			B1	
	BD = x + y	oe		
		BD = BC + CD	B1	
			DI	
	<i>BD</i> is a mu	Itiple of <i>MN</i>		
		0e	Q1	
			C C	
(b)	2:1			
. ,			B1	[4]
M5. (a)	5 a + 3 b + 6 a	i – 7 b	М1	
	11 a - 4 b		M1	
			A1	
(b)	22	ft their $11 \times 8 \div$ their 4		
		Accept 22 a (- 8 b)	B1 ft	
				[3]

[3]

M6.

(a) Opposite sides parallel (same direction) and equal (same length)
 or opposite sides are equal vectors
 Strand (i). Must mention that opposite sides are parallel and equal or equal vectors

Q1

B1

B2

(b) $\mathbf{b} - \mathbf{c}$ or $-\mathbf{c} + \mathbf{b}$

(c)
$$LP = \frac{1}{2}\mathbf{a} + \frac{1}{2}(\mathbf{c} - \mathbf{a})$$

 $LP = must be stated or LP = LA + AP$
 $B1 \text{ for } \frac{1}{2}\mathbf{a} + \frac{1}{2}(\mathbf{c} - \mathbf{a})$

Alteri	native 1				
1	1	1	1		
$\overline{2}\mathbf{a} + \overline{2}(\mathbf{c} - \mathbf{a}) = \mathbf{a} + \overline{2}\mathbf{c} - \overline{2}\mathbf{a}$					
		1	1		
	B1 for	2 a +	2(c - a)		

B2

M1

Alternative 2 $(LP) = -\frac{1}{2}\mathbf{a} + \mathbf{b} + (\mathbf{c} - \mathbf{b}) + \frac{1}{2}(\mathbf{a} - \mathbf{c})$ This is LP = LO + OB + BC + CP

$$-\frac{1}{2}a + b + c - b + \frac{1}{2}a - \frac{1}{2}c$$
A1

Alternative 3 $(LP) = -\frac{1}{2}\mathbf{a} + \mathbf{c} + \frac{1}{2}(\mathbf{a} - \mathbf{c})$ This is LP = LO + OC + CP $-\frac{1}{2}\mathbf{a} + \mathbf{c} + \frac{1}{2}\mathbf{a} - \frac{1}{2}\mathbf{c}$

A1

M1

(d)

Alternative 4

$$OC = c$$
 and L and P are midpoints
Using midpoint theorem. This may be expressed differently
but if evidence that mid-point theorem used then award M1M1 $LP = \frac{1}{2}OC$
This is for accurately describing the results using the
mid-point theorem.M1**Alternative 5**
Written explanation such as
(Journey of) L to A to P is half (the journey of) O to A to C so LP is half OC.
B1 if intention seen but explanation not complete or slight
errorB2 $MN = \frac{1}{2}\mathbf{b} + \frac{1}{2}(\mathbf{c} - \mathbf{b})$
 $LP = MN = \frac{1}{2}\mathbf{c} \dots LMNP$ is a
parallelogram (as opposite sides are the same vector)
By choosing MN it is opposite LP so no need to say opposite
sides but a 'conclusion' must be stated or impliedM1 $LM = PN = -\frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}$ M1 $LM = PN = -\frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}$ M1
 $LM = \frac{1}{2}\mathbf$

Alternative 2	1		
LP parallel to OC and $\frac{1}{2}$	OC (midpoint theorem)	M1	
<i>MN</i> parallel to <i>OC</i> and as opposite sides paralle	$\frac{1}{2}OC$ (midpoint theorem) so <i>LMNP</i> is a parallelogram el and the same length	A1	[6]